Search results for " special fiber"
showing 5 items of 5 documents
Irreducible components of Hurwitz spaces of coverings with two special fibers
2013
In this paper we prove new results of irreducibility for Hurwitz spaces of coverings whose monodromy group is a Weyl group of type B_d and whose local monodromies are all reflections except two.
On Hurwitz spaces of coverings with one special fiber
2009
Let X X' Y be a covering of smooth, projective complex curves such that p is a degree 2 etale covering and f is a degree d covering, with monodromy group Sd, branched in n + 1 points one of which is a special point whose local monodromy has cycle type given by the partition e = (e1,...,er) of d. We study such coverings whose monodromy group is either W(Bd) or wN(W(Bd))(G1)w-1 for some w in W(Bd), where W(Bd) is the Weyl group of type Bd, G1 is the subgroup of W(Bd) generated by reflections with respect to the long roots ei - ej and N(W(Bd))(G1) is the normalizer of G1. We prove that in both cases the corresponding Hurwitz spaces are not connected and hence are not irreducible. In fact, we s…
Irreducibility of Hurwitz spaces of coverings with one special fiber and monodromy group a Weyl group of type D d
2007
Let Y be a smooth, connected, projective complex curve. In this paper, we study the Hurwitz spaces which parameterize branched coverings of Y whose monodromy group is a Weyl group of type D d and whose local monodromies are all reflections except one. We prove the irreducibility of these spaces when $$Y \simeq \mathbb {P}^{1}$$ and successively we extend the result to curves of genus g ≥ 1.
Hurwitz spaces of coverings with two special fibers and monodromy group a Weyl group of typeBd
2012
f! Y; where is a degree-two coverings with n1 branch points and branch locus D and f is a degree-d coverings with n2 points of simple branching and two special points whose local monodromy is given by e and q, respectively. Furthermore the covering f has monodromy group Sd and f. D /\ D fD? where D f denotes the branch locus of f . We prove that the corresponding Hurwitz spaces are irreducible under the hypothesis n2 s r dC 1.